Landfill leachate treatment by anammox process: CLONIC Project

Maël Ruscallada, Helio López, Ramon Ganigué, Jordi Gabarró, Albert Vilà, Xavi Mora, Patrícia González. Marilós Balaguer and Jesús Colprim

Rimini
November 7th, 2013

CLONIC project

Outline

- Background
- Project description and achievements
- Implications of the project
CLONIC project

Background

Project partners

Research group of the University of Girona (Catalonia, Spain). Working on eco-innovative water solutions since 1992.

Part of the Institute of the Environment of UdG
Teaching activity (graduate and postgraduate)
Members of TECNIO (technology transfer network)

40 members. 550 m² laboratories and pilot plants
Turnover 2012: 1,5 Millions € (35% Private – 65% Public).
Foundation of LEQUIA spin-off SISLtech S.L. www.sisltech.net in 2003
Project partners

Laboratory of chemical and environmental engineering

Our current research lines

- Design, operation and control of advanced processes for biological treatment of industrial and urban wastewaters
- Valorisation of resources within the water-energy nexus
- Environmental Decision Support Systems (EDSS)
- Advanced adsorption/oxidation processes for the treatment of liquid and gaseous effluents
Since 1999, CESPA has a specific section in the R&D department to drive initiatives in the scope of technological development (Innovation and R&D).

Cespa’s technical knowledge maintenance and continuous update in the fields related to their business activities.

Technological knowledge transfer to the different activities of CESPA
CLONIC project

Project partners

- Collection of municipal and industrial solid wastes
- Final disposal in landfills and management of landfill sites

Landfilling

Rimini, November 7th, 2013
Problematic of landfill leachates

Leachates’ composition:
- Waste disposal
- Climatology
- Landfill management
- Waterproofing efficiency
- Wastes’ composition
- Waste compacting
- Age of landfill site

Background

Problematic of landfill leachates

- Mature landfill leachates
 - High ammonium content
 - OM mainly refractory COD
 - High alkalinity
 - High concentration of salts

- bCOD:N ratio < 1
- \(\text{HCO}_3^- : \text{NH}_4^+ - \text{N} = 1.14 \)
Problem definition: Nitrogen removal from leachates

Conventionally

Nitrogen removal by ammonia stripping

Refractory COD and salts removal by membrane filtration techniques

Energy consumption
pH adjustment
Gas treatment

CLONIC: looking for a new cost effective technology

R&D department of CESPA

INNOVATION SECTION:

Scope: landfill leachate treatment, research of novel solutions for current problems and investigation of new treatments for pollutants

- Interest in research on and development of biological treatments based on ANAMMOX process for ammonium removal. The anammox process offers:
 - Reduction of reagents consumption.
 - Reduction of aeration requirements by 40%.
 - Low sludge production.
CLONIC: looking for a new cost effective technology

2002 - 2007
Collaboration LEQUIA-UdG/CESPA

CLONIC project

PANAMMOX® PROCESS

Project description and achievements
Objectives

Development of a **new technology** for the **treatment of mature landfill leachates** by combining two-step **nitritation/anammox process** for full autotrophic N-removal with **thermal drying** for salts removal.

Goals

- Reduction of energy and reagents consumption
- Minimizing by-products and concentrated effluents production to avoid further treatment
CLONIC project

PN-Anammox process

- **Partial nitritation (PN):**
 - Oxidation of NH₄⁺ to NO₂⁻
 - Partial oxidation, only 57% of incoming NH₄⁺

- **Anammox (Amx):**
 - Anaerobic ammonium oxidation to N₂ gas
 - NO₂⁻ electron acceptor
 - 89% N-removed, 11% as NO₃⁻ in effluent

\[
\text{NH}_4^+ \rightarrow 1.32 \text{ NO}_2^- + 0.066 \text{ HCO}_3^- + 0.13 \text{ H}^+ \rightarrow 1.02 \text{ N}_2^- + 0.26 \text{ NO}_3^- + 0.066 \text{ CH}_4, \text{N}_2, \text{N}_0.15 + 2.03 \text{ H}_2\text{O}
\]

Highlights:
- Reduction of energy consumption (aeration) by 40%
- Autotrophic: no external OM required
- Capacity to treat wastewater with extremely low bCOD:TKN ratios

CLONIC project

Previous work

2002-2003: Sharon vs PN-SBR

- Study of the SHARON process for partial nitritation (PN)
 - Partial nitritation without sludge retention (Nitrite build-up by NOB wash out)

- Starting to study the PN in **SBR technology. PN-SBR process.**
 - Effective sludge retention (Nitrite build up thanks to FA and FNA inhibition on NOB)
PN-Anammox proces (N-removal)

PN process

- Lab-scale. 20 litres reactor.
- Study of optimal operational conditions:
 - Feed-Batch vs. Step-Feed (Optimization of IC use)
 - Simulated and raw leachate treated (high N load)
- Objectives successfully reached:
 - Start-up and stable PN (1.32 NO₂⁻ : NH₄⁺)
 - Treating raw leachate with high ammonium content (3200 mg N-NH₄⁺/L)
PN-Anammox proces (N-removal)

Anammox process
- Obtaining the anammox biomass.
 - Study of different inoculum sources
- Anammox reactor start-up and enrichment:
 - Erlenmeyer (250 ml)
 - SBR (20 liters)
- Mineral medium and simulated leachate
- Objectives successfully reached:
 - Anammox biomass: *Cand. Brocadia Anammoxidans*
 - From micro- to lab-scale (scale-up to 20 liters)
 - NLR up to 1.6 Kg N·m⁻³·dia⁻¹ (92% R-removal)

Thermal drying

- Pilot-plant study
 - Capacity to treat 500 kg/h of effluent
- Use of the biogas produced in landfill:
 - Biogas with a methane enrichment of 50%
- Treating real leachate in a landfill of CORSA
- Objectives successfully reached:
 - All pollutants immobilized in the dry powder
 - Atmospheric emissions and effluent under the discharge limits
 - Dry powder appropriate for landfill disposal
Results of CLONIC

New treatment configuration successfully tested, showing good N and salts removal efficiencies.

Environmental cost of the treatment:
- 25.66 €/m³ by conventional treatment
- 13.32 €/m³ by CLONIC configuration

Results of CLONIC

PANAMMOX® process

Two-step PN-Anammox process
Implications of the project

- Development and implementation of the PANAMMOX® technology

After the positive results obtained during CLONIC project, CESPA and LEQUIA decided to proceed with the development of the PANAMMOX® process in view to final industrial implementation in CESPA's landfill sites as a cost-effective alternative to current leachate treatments.
Implications of the project

- **Development and implementation of the PANAMMOX® technology**

 - **SCALE-UP**
 - Lab-scale (10-20 L)
 - Pilot-scale (20-250 L)
 - Semi-Industrial (400 L)

 - **2012: Process implemented at semi-industrial scale, in-situ and treating different influents**

 - **Influent**
 - Landfill leachate
 - Digestion returns in WWTP

 - **Semi-industrial pilot plants**
 - Reactor volume
 - 400L
 - 250L
 - 400L

 - **Study of biological processes: PN+Anammox**
 - **Anammox biomass enrichment and process control**
 - **Adaptation to raw leachate (anammox)**
 - **Extreme conditions**
 - **Pre-industrial scale treating real leachate.**
 - **Pre-industrial scale application to sludge digestion returns in WWTP.**

Rimini, November 7th, 2013
N-OPTIMOX project (2013-2014): Final step to industrial implementation

N-OPTIMOX

Construction of the first PANAMMOX demonstration full-scale plant in a landfill site to remove nitrogen from landfill leachate.

- Start date of civil work: November 2013
- Plant in operation: end 2014

Leachate characteristics:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Mean</th>
<th>δ</th>
<th>Min.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity</td>
<td>mS/cm</td>
<td>30.72</td>
<td>8.54</td>
<td>9.28</td>
<td>44.00</td>
</tr>
<tr>
<td>Ammonium nitrogen</td>
<td>mgN/L</td>
<td>2251</td>
<td>816</td>
<td>635</td>
<td>3856</td>
</tr>
<tr>
<td>COD</td>
<td>mgO₂/L</td>
<td>3609</td>
<td>1277</td>
<td>868</td>
<td>5915</td>
</tr>
<tr>
<td>Chlorides</td>
<td>mgCl⁻/L</td>
<td>4979</td>
<td>1608</td>
<td>1073</td>
<td>7532</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>8.4</td>
<td>0.4</td>
<td>7.4</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Daily flow to treat: 19 m³
CLONIC project

Implications of the project

- **N-OPTIMOX project (2013-2014): Final step to industrial implementation**

CORSA

Current treatment:
1. Phenton (COD removal)
2. Stripping (N removal)

Implementation of PANAMMOX® in CORSA
N-OPTIMOX project (2013-2014): Final step to industrial implementation

Implementation of PANAMMOX® in CORSA

![Diagram of PHENTON PROCESS with reactors and treatment steps](image)

Cost Savings with PANAMMOX® in CORSA

- **Current Treatment Cost**: 46.5 €/m³
- **PANAMMOX Treatment Cost**: 29.3 €/m³
- **Reagents cost reduced by 54%**
 - Better use of alkalinity (H₂SO₄)
 - bCOD biologically removed (H₂O₂)
- **Effluents management cost reduced by 22%**
 - No (NH₄)₂SO₄ produced
 - Less effluent volume (lower dosage)

Rimini, November 7th, 2013
CLONIC project

- **N-OPTIMOX project (2013-2014): Final step to industrial implementation**

Current technology development

- Effluent quality required
- N-removal PANAMMOX®
- Other pollutants Second step
- Ultrafiltration
- Thermal drying
- AOP (Photo-Fenton)
- others...

Different process configurations by coupling the PANAMMOX® process with other technologies to offer the best treatment in each case.

Summary of 11-year collaboration CESPA-LEQUIA

Development and implementation of PANAMMOX technology

Research carried out in LEQUIA has provided scientific and technical knowledge that CESPA can implement to supply its business necessities.

- **The private company: CESPA**
 - Need for new alternatives for wastewater treatment
 - Willingness to support researchers and find financial aids for research activities
 - Agreement of funding research activities
- **University of Girona: LEQUIA**
 - Research to develop scientific-technical knowledge and technology transfer
 - Training activity (3 PhD defended) and publications in high impact journals (14)
 - Experience in identifying real needs to define research projects
CLONIC project

Acknowledgements

CLONIC. (www.lifeleachate.com) LIFE03 ENV/E/000140, cofunded by the EU.

LEAMMOX. CIT-310000-2009-063).

NIMOX. (IAP-560620-2008-59).

People from the R&D department of CESPA - Ferrovial Servicios

Thank you for your attention!

The LEQUIA-UdG team: Dr. Jesús Colprim*, Dra. Mariòs Balaguer, Dr. Helio López, Dr. Ramón Ganigué, Dr. Maël Ruscalleda, Xavi Mora, Jordi Gebertó, Albert Vilà, Patricia González, technical support.

*Team leader: Dr. Jesús Colprim (J.Colprim@lequia.udg.cat)

Dr. Maël Ruscalleda
LEQUIA-UdG, mael@lequia.udg.cat
Institute of Environment, Universitat de Girona

www.lifeleachate.com
lequia.udg.cat